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ABSTRACT 

In this paper, we propose a performance analysis 
regarding false alarms, correct detections and the resolution for 
the well-known maximum-likelihood deconvolution (MLD) for 
Bernoulli-Gaussian (B-G) processes distorted by a linear time 
invariant system. We also show some simulation results using 
synthetic data which support the proposed analysis. 

I. INTRODUCTION 
Estimation of a desired signal p(k), which is distorted by 

a linear time-invariant system v( k) ,  from noisy measurements, 

where r(k) is a white gaussian random process with zero mean 
and variance or2 and q(k) is a Bernoulli process defined as 

Pr[q(k)] = (l-A)(13(k)) (3) 
where q(k) can take only a binary value one or zero and O < X < l  is 
the probability for q(k) equal to 1. Kormylo and Mendel [2,3] 
developed an MLD based on this model and the assumption that 

2 n(k) is white gaussian with zero mean and variance un . 
In this paper, we present, in addition to SNR, what 

characteristics of v(k) determine the performance of the MLD 
algorithm. For simplicity, we assume that statistical parameters 
A, on , 0; and v(k) are given a priori and present a 
performance analysis for the estimation of p(k). 

11. BACKGROUND OF ML DECONVOLUTION 

2 

The MLD tries to search for the q(k) such that the 
likelihood defined as 

is maximum, where z = (z ( l ) , z (2) ,  ' .  . ,z(N)) '  and 9 = 

(q(l),qJ2), ,q(N))'. The optimal ML solution for q(k) is 
never implemented in practice because far too many possible 
q(k)'s need to be tested. Therefore, the followin performance 
analysis is associated with a well-known sutoptimal ML 
algorithm, called single-most-likely-replacement (SMLR) [ 1,2] 
algorithm, which iteratively updates a reference sequence 9, by 
gkl  until convergence where qk(i) = qr(i) [1-6(i-k)] + [ l q r ( i ) ]  
b(i-k) and k' is associated with the maximum of the likelihood 
ratio A(k@ = S{qkIg}/S{qrIz}. After detection of q(k), 
rML(k) can be obtained using the minimum-variance 
deconvolution filter (31. 

ski I z}=p(z,!x) (4) 

111. PERFORMANCE ANALYSIS 
The performance of the SMLR detector can be predicted 

from the value of Pr(k'). However, the derivation of Pr(k') is 
almost formidable if not impossible. Therefore, the following 
analysis is based on a heuris t ic  assumption that Pr(k') is 
proportional to the mean value, E[lnh(k',qr)), of lnA(k',qr), 
which is then computable and is a function of both SNR and 
wavelet characteristics. We use it to analyze the dependence of 
P,(k') upon both SNR and wavelet characteristics. 
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The true q(k), denoted qT(k), for a small X is a sparse 
spike train which is basically composed of isolated single spikes 
and pairs of two close spikes. Various aspects of performance 
including false alarms. correct detections and the resolution can 
be unravelled by considering the following two cases. 
CASE I. qT(k) = S(k-k,): 

Different selections of gr will lead to different aspects of 

I-A. qr(k) = 0, no spikes in qr; 

14 .  q,(k)=S(k-m), m#kl, a false alarm in g,. 

the performance. We consider three selections of qr as follows: 

I-B. qr (k) = b( k-kl)=qT( k); 

We only present the analysis for case I-A. The analysis for the 
other two cases can be similarly performed. For this case, it can 
be shown that 

where F=SNR/X, and y(k)=cp(k)/ (0) and cp(k)=v(k)*v(-k). 
Note that y(O)=I, y(k)=y(-k) and r$k)1(1. Let us consider all 
possible cases about k' as follows: 

1 F 2  In F x E[ln~(k,qr) lz  2 + 2 Y - 2 + 1"- (5) 

(I-A-1) k'=kl, a correct detection occurs; 
(I-A-2) k'#kl,  a false alarm occurs. 
One can see, from (5), that max{lnA(k,qr)} = InA(kl,qr) 

and A(k) = max{lnA(k,q,)} - lnA(k,qr) =(F/2)[1-y 2 (k-kl)]. 

We now infer Pr(I-A-l) = Pr(k'=kl) and Pr(I-A-2) = 
Pr(k'#kl) from A(k). Pr(I-A-I) - Pr(I-A-2) increases as F 

increases and y2(k) decreases, but has nothing to do with the 
length of y(k), which is about twice the length of v(k). When 
y2(k)<<l  for k#O (like a thumbtack), Pr(I-A-l) >> 
Pr(I-A-2) always happen even when F is not large. However, 

when ? (k )d ,  Ik(_<W, for some W, Pr(I-A-2) > Pr(I-A-I) 
could happen when F is not large. In other words, a false alarm 
could occur near kl when the mainlobe of 7(k) is narrow and F 
is not large. Finally, the ratio Pr(I-A-l)/Pr(I-A-2) can be 
made arbitrarily large by increasing F or SNR. Therefore, we 
conclude that the performance is better for larger F and Y(k) 
with a narrower mainlobe. 

We draw the following conclusions from the analysis for 
CASE I inculding I-A, I-B and 1-43: 
(Rl) The performance is better for larger SNR and y(k) with a 

narrower mainlobe; 
(R2) The performance is not dependent upon the wavelet 

length; 
(R3) The performance can be infinitely improved by increasing 

SNR no matter whether the mainlobe of y(k) is broad or 
narrow; 

(R4) Although false alarms for y(k) with a broad mainlobe 
cannot be removed by increasing SNR, their amplitudes 
tend to be smaller for larger SNR; 

(R5) For the same performance, a higher SNR is required for 
y(k) with a broad mainlobe than for Y(k) with a narrow 
mainlobe. 

CASE 11. qT(k)=6( k-kl)+b( k-k2), k2#kl: 
The analysis for this case is similar to that for CASE I. 

After we analyzed the following three selections of qr: 
11-A. qr(k)=O, no spikes in gr; 
XI-B. qr(k)=S(k-kl), a true spike in 4,; 



1 1 4 .  qr(k)=6(k-m), m#kl, m#k2, a false alarm at k=m. 
We ended up with the same conclusions given by (Rl) through 
R5 for CASE I and one extra conclusion: 
R6 The resolution is better for y(k) with a narrower mainlobe. 

IV. SIMULATION EXAMPLES 
We select two different wavelets. vl(k) taken from [1,2] 

and v2(k) are shown in Figure la. Normalized correlation 
functions yl(k) and y2(k) are shown in Figure lb. 

From Figure 2 where SNR=10, we see that the 
deconvolved results are very good. These results are consistent 
with (Rl) and (R6) since the mainlobe of yl(k) is narrow. 

Next, let us compare Figure 2 with Figure 3a where 
SNR=10 and wavelet lengths are about the same for both but 
the mainlobe widths of yl(k) and y2(k) are very different. 
Obviously, the results shown in Figure 2 are much better than 
those shown in Figure 3a. This is consistent with (RI) and (R2). 

Next, we show the performance improvement for the 
example associated with v2(k) by increasing SNR. Figures 3b 
shows the deconvolved results for SNR equal to 10000. The 
results shown in this figure are consistent with (R3) and (R4). 

Finally, comparing Figure 2 where SNR=10 with Figure 
3b where SNR=10000, we see that their performances are 
comparable but SNR's are very different. This is also consistent 
with (R5). 

V. CONCLUSIONS 
In this paper, we have presented an analysis for the 

performance of a typical suboptimal MLD algorithm, the SMLR 
algorithm, for B-G processes assuming that statistical 
parameters A, U: and U: and v(k) were given a priori. 

The presented analysis led to six main conclusions (Rl) 
through (R6) given in Section I11 with regard to the dependence 
of the performance of the SMLR algorithm upon both SNR and 
the mainlobe width of the normalized autocorrelation function 
y(k) of v(k). We believe that these conclusions should also apply 
to other comparable suboptimal ML algorithms and that this 
analysis can help users explain the deconvolved data from the 
view points of both SNR and y(k). 
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Figure 1 (a) vl(k) (solid line) and v2(k) (dashed line) and 

(b) normalized autocorrelations y, (k) (solid line) 
and y2(k) (dashed line). 
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Figure 2 Deconvolved results associated with vl(k) and 
SNR=10. *Is denote true spikes and bars denote 
estimates. 
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Figure 3 Deconvolved results associated with v2(k) and (a) 

SNR=10, (b) SNR=10000, respectively. *Is denote 
true spikes and bars denote estimates. 


